普里姆(Prim)算法

普里姆算法,图论中的一种算法,可在加权连通图里搜索最小生成树。意即此算法搜索到的边子集所构成的树中,不但包括连通图里的所有顶点,且其所有边的权值之和亦为最小。
邻接矩阵实现的Prim算法的时间复杂度为O(n^2)。

08-图7 公路村村通

现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。

输入格式:

输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。

输出格式:

输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。

输入样例:

6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3

输出样例:

12

代码

#include <bits/stdc++.h>
using namespace std;
#define maxn 1005
int a[maxn][maxn];
int n,m;
int visited[maxn]={0};
int sum=0;
int findMin(){ //查找最小的点
    int x=1000000,j=0;
    for(int i=1;i<=n;i++){
        if(visited[i]&&visited[i]<x){
            x=visited[i];
            j=i;
        }
    }
    return j;
}
void prime(){    //生成最小生成树 
    for(int i=2;i<=n;i++){
        visited[i]=a[1][i];
    }
    
    for(int i=1;i<n;i++){
        int x=findMin();
        if(x){
            sum+=visited[x];
            visited[x]=0;
        }else{
            sum=-1;
            return ;
        }
        for(int j=1;j<=n;j++){    //更新最小生成树 
            if(visited[j]&&visited[j]>a[x][j]){    
                visited[j]=a[x][j];
            }
        }
    }
}
int main(){
    cin>>n>>m;
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++){
            a[i][j]=1000000;
        }
            
    int q,w,e;
    for(int i=1;i<=m;i++){
        cin>>q>>w>>e;
        a[q][w]=a[w][q]=e;
    }
    prime();    
    cout<<sum;
    return 0;
}